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Endocannabinoids are important regulators of organ homeostasis.
Although their role in systemic vasculature has been extensively
studied, their impact on pulmonary vessels remains less clear.
Herein, we show that the endocannabinoid anandamide (AEA) is
a key mediator of hypoxic pulmonary vasoconstriction (HPV) via
fatty acid amide hydrolase (FAAH)-dependent metabolites. This is
underscored by the prominent vasoconstrictive effect of AEA on
pulmonary arteries and strongly reduced HPV in FAAH−/− mice and
wild-type mice upon pharmacological treatment with FAAH inhib-
itor URB597. In addition, mass spectrometry measurements revealed
a clear increase of AEA and the FAAH-dependent metabolite arach-
idonic acid in hypoxic lungs of wild-type mice. We have identified
pulmonary vascular smooth muscle cells as the source responsi-
ble for hypoxia-induced AEA generation. Moreover, either FAAH−/−

mice or wild-type mice treated with FAAH inhibitor URB597 are
protected against hypoxia-induced pulmonary hypertension and
the concomitant vascular remodeling in the lung. Thus, the AEA/
FAAH pathway is an important mediator of HPV and is involved in
the generation of pulmonary hypertension.
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Endocannabinoids have been shown to induce vasorelaxation
in systemic vessels which is primarily mediated by the specific

cannabinoid 1 and 2 (CB1/CB2) and also other G protein-coupled
receptors (e.g., non-CB1/CB2 receptors) (1, 2). Based on these
results, especially CB1 receptors have been proposed as promising
therapeutic targets for the treatment of arterial hypertension
(2). Endocannabinoids are also known to potentially act via
their intracellular enzymatic metabolization by the fatty acid
amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL)
to (vaso)active intermediates (3, 4), but these pathways are con-
sidered less important for the regulation of vascular tone in
systemic vessels.
Pulmonary arteries are unique because of their prominent

vasoconstriction in response to hypoxia. Hypoxic vasoconstric-
tion is responsible for adapting perfusion to ventilation in the
lungs and therefore also plays an important role in pathophysi-
ological situations characterized by a high ventilation/perfusion
mismatch such as acute lung injury or liver cirrhosis (5, 6). In
addition, this mechanism potentially contributes to the onset of
pulmonary hypertension in response to hypoxia occurring in high
altitude or in various respiratory diseases such as chronic ob-
structive pulmonary disease or fibrosis (7–9). Pulmonary arterial
smooth muscle cells are suggested to play a major role in hypoxic
vasoconstriction (10), but the precise mechanisms and the un-
derlying signals are still not well understood. Earlier experimental
evidence suggested that the endocannabinoid anandamide (AEA)
can either enhance (11) or reduce (12) pulmonary arterial tone,
and this prompted us to reexplore the role of endocannabinoids in
basic physiological and pathophysiological responses of pulmonary
arteries using experimental in vitro, ex vivo, and in vivo approaches.

Results
Anandamide Increases Pulmonary Arterial Tone. The effect of AEA
on pulmonary arterial tone was first assessed in large and small
pulmonary arteries in mice. AEA had no effect on large pulmonary
arteries in isometric force measurements using a myograph (Fig.
S1A). In contrast, AEA induced a prominent increase of pulmo-
nary arterial tone in the isolated perfused lung (IPL) system (Fig.
1 A and D). This model provides a reliable readout for pulmo-
nary vascular tone, which is mostly determined by the resistance
of small arteries. The effect of AEA was found to be dose-
dependent, starting at a nominal AEA concentration of 100 nM
(Fig. 1B and Fig. S1B). Quantitative analysis using liquid chro-
matography-multiple reaction monitoring (LC-MRM) measure-
ments revealed that only 23.6 ± 4.8% (n = 6) of the exogenously
applied dose of lipophilic AEA reached the lungs via the tubes of
the perfusion system of the IPL; these data indicate that AEA
evoked pulmonary vasoconstriction at concentrations that have
been measured in the human blood (13, 14). The effect of AEA
was specific because no response was observed upon perfusion
with the solvent ethanol (Fig. 1 C and D) or the endocannabinoid
2-arachidonylglycerol (2-AG, 10 μM; Fig. S2A). We compared the
vasoconstrictive effect of AEA with that of serotonin (5-HT), one
of the strongest vasoconstrictors of pulmonary arteries, and found
that the AEA-induced increase of vascular tone at equivalent
concentrations was ∼50% higher (Fig. 1D). The strong effect of
AEA on pulmonary vascular tone could imply its potential in-
volvement in pathophysiological processes. Because in humans
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a higher incidence of pulmonary hypertension is reported for
females, we have focused on female mice in the present study. To
exclude prominent sex-dependent differences in the pulmonary
vascular response to endocannabinoids, we have also tested the
effect of AEA (10 μM) in male mice using the IPL system. A
prominent vasoconstrictive response upon AEA application was
observed; the magnitude was ∼30% lower in male (n = 8) com-
pared with female mice (n = 4). Thus, AEA is a specific and
potent vasoconstrictor of pulmonary vessels in male and fe-
male mice.

AEA-Induced Pulmonary Vasoconstriction Is Mediated by FAAH-Dependent
Metabolites.We next investigated the signaling pathway underlying
AEA-induced vasoconstriction in pulmonary arteries. First, we
determined expression of the most important receptor molecules
and the key enzyme involved in metabolization of AEA in mu-
rine lungs and found only minimal CB1 but prominent CB2 re-
ceptor and FAAH expression (Fig. S2B). In IPL measurements
the vasonconstrictive effect of AEA was independent of CB1 and
CB2 receptors because it was preserved in Cnr1−/− and Cnr2−/−

mice (Fig. 1D). This was also corroborated by experiments with
the CB1/CB2 receptor agonist HU-210, which did not alter
pulmonary arterial tone (Fig. S2C). These data suggested that
AEA metabolites may be involved in AEA signaling in pulmo-
nary vessels. To examine their contribution, we took advantage
of FAAH−/− mice and tested the effect of AEA on pulmonary
arterial tone in the IPL. AEA had only a very small effect on
pulmonary vascular tone in FAAH−/− mice (Fig. 2 A and B).
These results were confirmed using the FAAH inhibitor URB597
(1 μM), which strongly reduced the vasconstrictive effect of AEA
on pulmonary vessels (Fig. 2B) in wild-type mice. URB597 had no
unspecific effects on pulmonary vasoreactivity because it did
not alter the 5-HT–induced increase of vascular tone (Fig. S2D).
As further proof of the FAAH dependence of AEA-mediated

vasoconstriction, we found that the nonhydrolyzable AEA ana-
log Meth-AEA (10 μM) did not alter pulmonary vascular tone
(Fig. 2B). We also tested the effect of the pharmacological
blockade of FAAH with URB597 in Cnr1/Cnr2−/− mice, but this
approach did not restore the AEA-induced vasoconstriction
(Fig. 2B). These experiments underscore that the decreased va-
soconstriction by AEA after inhibition of FAAH is due to the
reduction or lack of FAAH-dependent metabolites and is not
caused by AEA accumulation resulting in enhanced signaling via
CB receptors. Because FAAH is known to metabolize AEA to
arachidonic acid (AA), we also examined this downstream me-
tabolite and found that AA (10 μM) induced a strong transient
vasoconstriction in pulmonary arteries in the IPL (Fig. S2E). A
contribution of further downstream metabolites like eicosanoids
was likely, because enzymes producing eicosanoids, such as
cyclooxygenase1 (COX1) and 2 (COX2) as well as 5-lipoxygenase
(5-LOX), are highly expressed in lung tissue (Fig. 2C). To ex-
amine their involvement in AEA-dependent pulmonary vaso-
constriction, we applied different pharmacological agents. Although
inhibition of CYP450 enzymes by 17-octadecynoic acid (ODYA)
(1 μM) had no effect (Fig. S2F and Fig. 2D), inhibition of COX by
indomethacin (Indo) (10 μM) and 5-LOX by nordihydroguaia-
retic acid (NDGA) (10 μM) induced a prominent reduction of the
AEA-dependent pulmonary vasoconstriction (Fig. 2D). The leu-
kotriene receptor antagonist montelukast (1 μM), an approved
antiasthma drug, also attenuated pulmonary arterial vasocon-
striction by AEA (Fig. 2D and Fig. S2G); montelukast did not
change 5-HT–induced vasoconstriction, underscoring the specificity
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Fig. 1. The endocannabinoid AEA increases pulmonary arterial tone in the IPL
model of mice. (A) Original recording illustrates an elevation of pulmonary
arterial pressure (PAP) in the IPL upon application of the potent pulmonary
vasoconstrictor serotonin (5-HT, 10 μM) or AEA (10 μM). (B) The AEA-induced
PAP increase is dose-dependent; the contractile response to AEA is normalized
to PAP values in presence of 5-HT (10 μM). (C) Original recording of PAP in the
IPL reveals almost no effect upon application of the solvent ethanol (EtOH).
Control: 5-HT (10 μM). (D) Statistical analysis of PAPs normalized to the 5-HT
response indicates that AEA-induced vasoconstriction is preserved in Cnr1−/−

and Cnr2−/− mice, whereas the solvent EtOH has no effect. *P < 0.05, one-way
ANOVA with Dunnett’s test.
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Fig. 2. AEA elevates PAP via the FAAH signaling pathway. (A) Original re-
cording of PAP in the IPL illustrates only a minimal vasoconstrictive response
by AEA (10 μM) in FAAH−/− mice. Control: 5-HT (10 μM). (B) Statistical analysis
of PAPs normalized to the 5-HT response shows that vasoconstriction by AEA
(10 μM) is mediated by FAAH-dependent AEA metabolites because it is
strongly reduced in FAAH−/− mice and upon pharmacological inhibition of
FAAH by URB597 (URB, 1 μM) in wild-type and Cnr1/2−/− mice. In addition,
the nonhydrolyzable AEA analog Meth-anandamide (Meth-AEA, 10 μM) has
no effect. **P < 0.01, one-way ANOVA with Dunnett’s test. (C) PCR analysis
reveals expression of cyclooxygenase1 (COX1), cyclooxygenase2 (COX2), and
5-lipoxygenase (5-LOX) in murine lung; as positive control, mouse brain was
used. (D) Statistical analysis of PAPs normalized to the 5-HT response indi-
cates that vasoconstriction by AEA (10 μM) is mediated by COX- and 5-LOX–
dependent metabolites because it is diminished by the respective inhibitors
Indo (10 μM) and NDGA (10 μM) or blockade of leukotriene receptors with
montelukast (1 μM). The CYP450 inhibitor ODYA (1 μM) has no effect. **P <
0.01, one-way ANOVA with Dunnett’s test.
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of this compound (Fig. S2D). These data suggest that AEA is
a strong pulmonary vasoconstrictor, and this effect is mediated by
AEA hydrolysis to AA and COX- and LOX-dependent metabolites,
especially leukotrienes. The proposed signaling pathways and
the pharmacological inhibitors are summarized as a scheme
in Fig. S3.

FAAH Is a Mediator of Hypoxic Pulmonary Vasoconstriction.Hypoxia-
induced vasoconstriction (HPV) is unique for the pulmonary
vasculature, and earlier studies have proposed that AA or eico-
sanoids may be involved (15, 16). We therefore explored whether
the AEA/FAAH pathway and its metabolites could also play a
role in acute HPV. For this purpose we ventilated mice with
hypoxic gas in the IPL and measured the mean pulmonary ar-
terial pressure increase during two subsequent hypoxic challenges
(0% O2 ventilation) after a 5-HT–induced contraction under
normoxia. The hypoxia-induced vasoconstriction reached almost
60% of the 5-HT (10 μM) effect in wild-type animals, whereas it
was strongly reduced to about 20% in FAAH−/− mice (Fig. 3 A–
C); there was no difference in baseline tone between FAAH−/−

(0.86 ± 0.5 cm H2O, n = 8) and wild-type (0.45 ± 0.8 cm H2O,
n = 5, P > 0.05) animals. We also examined HPV in wild-type

mice in the presence of the pharmacological FAAH inhibitor
URB597 (1 μM and 10 μM). When URB597 was applied in in-
creasing concentrations during the two hypoxic episodes (1 μM
and 10 μM), it led to a strong reduction of the first and second
hypoxic vasoconstrictive responses, respectively (Fig. S4A); when
10 μM of URB597 was used throughout the experiment, the
hypoxia-induced vasoconstriction in lungs of wild-type mice was
almost abolished (Fig. S4B and Fig. 3C). These results could not
be explained by an accumulation of AEA and its degradation via
other pathways besides FAAH (e.g., prostamide pathway), be-
cause the leukotriene receptor blocker montelukast (1 μM) also
prevented HPV when applied before (Fig. 3C) or during (Fig.
S4C) the hypoxic challenge. Thus, metabolization of AEA by the
FAAH/LOX pathway in the lung is critically involved in HPV.

Hypoxia Causes Elevated AEA and AA Levels in the Lung. To directly
assess AEA and AA levels in whole lungs under hypoxia, we used
LC-MRMmeasurements. These could not be performed on lung
tissue after IPL because cardiovascular arrest leads to unspecific
increase of AEA and AA in the tissue. Therefore, mice were
kept in hypoxic chambers (10% O2) and killed at different time
points, and the lung tissue was analyzed. We found that AEA
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FAAH (red) (G and I), and vascular smoothmuscle cells (α-smoothmuscle actin; green) (E, F,H, and I); nuclei are stained with hoechst (blue) (F and I). (Scale bar, 10 μm.)
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and AA levels were significantly elevated after 2 and 6 h of hypoxic
ventilation (Fig. 4A) but not earlier as would be expected from
the IPL data. This is most likely due to the slower onset of strong
hypoxia in spontaneously breathing mice kept in 10% O2. A similar
time course for the development of HPV has been also reported
for humans (17). The specificity of the elevation of AEA was
further demonstrated by 2-AG measurements that displayed no
change upon hypoxia exposure (n ≥ 5, *P > 0.05 for 0 h vs. 1, 2,
6, and 24 h).
Thus, hypoxia leads to increased levels of AEA and its me-

tabolite AA in the lung.

AEA Is Generated and Metabolized in Pulmonary Arterial Smooth Muscle
Cells. We next wanted to identify the cell type responsible for
AEA generation in the lung and therefore investigated the ex-
pression of enzymes involved in AEA synthesis. We reasoned
that elevated levels of AEA likely correlate with its increased
synthesis by N-acyl-phosphatidyl-ethanolamine phospholipase D
(NAPE-PLD) (18), and we therefore focused on the gene ex-
pression analysis of this enzyme. Similar to FAAH, we found
a strong signal for NAPE-PLD at the mRNA level in the whole
lung, which was comparable to murine brain tissue (Fig. S2B and
Fig. 4B). In contrast, MAGL, an enzyme that mainly metabolizes
2-AG, was only weakly expressed in the lung (Fig. 4B). Pulmo-
nary expression of NAPE-PLD and FAAH was also confirmed at
the protein level by Western blot analysis (Fig. 4C). Both en-
zymes showed only low expression levels in the heart (Fig. 4C).
Similarly, this was also observed by immunostainings of cardiac
vessels (Fig. S5 A–L), which displayed only very weak expression
levels of NAPE-PLD and FAAH, indicating a special role of
these enzymes in pulmonary vasoregulation. To identify the cell
types expressing NAPE-PLD and FAAH, we performed immu-
nostainings in lung sections and found that pulmonary arterial
smooth muscle cells of intrapulmonary arteries expressed both
enzymes (Fig. 4 D–I); this finding is in full agreement with the
proposed key role of smooth muscle cells for the induction of
HPV (10). In clear contrast, in the CD31+ endothelial cell layer
of muscularized intrapulmonary arteries we could not detect
NAPE-PLD and FAAH (Fig. S5 M–R). Because smooth muscle
cells of pulmonary arterioles appeared to be the main site of

AEA generation and metabolization, we analyzed the expression
of NAPE-PLD and FAAH in a human pulmonary arterial smooth
muscle cell line (hPASMCs) and found again prominent protein
expression of NAPE-PLD and FAAH (Fig. 5 A and B). We used
the same cell type to assess AEA production and metabolization.
First, we tested the conversion of exogenously applied AEA into
AA after 1 h in hPASMCs. LC-MRM yielded clearly elevated AA
levels compared with solvent control (Fig. 5C). Next, we examined
the effect of hypoxia on AEA and AA levels in hPASMCs by LC-
MRM. The analysis was performed after 5 h of hypoxia (0.1% O2)
or normoxia (controls) because this time point had yielded max-
imal levels of AEA and AA upon induction of hypoxia in whole
lungs (see also Fig. 4A). Our data in hPASMCs showed a signifi-
cant elevation of AEA and AA under hypoxia (Fig. 5D), which
was accompanied by an increase of NAPE-PLD protein expres-
sion by 34.7 ± 6.7%, n = 4, P < 0.05 (Fig. 5E). In contrast to the
smooth muscle cells, bovine pulmonary endothelial cells showed
no increase of AEA and AA levels after 5 h of hypoxia (n = 5, P >
0.05); similarly, AEA levels in human microvascular endothelial
cells of the lung also did not increase significantly upon hypoxia
compared with controls (n = 5, P > 0.05). Thus, hypoxia increases
AEA and AA levels in pulmonary arterial smooth muscle cells.

FAAH Is Involved in the Development of Pulmonary Arterial Hypertension.
Our experiments clearly demonstrate that the AEA/FAAH axis
is strongly involved in the regulation of acute hypoxic vasocon-
striction, and we therefore wondered whether this signaling
pathway also plays a role in the generation of hypoxia-induced
pulmonary hypertension. To examine this, wild-type and FAAH−/−

mice were kept for 3 wk under normoxic (21% O2) or hypoxic
(10% O2) conditions, and then functional and morphological
analyses were performed. Hypoxia resulted, as expected, in an
increase of vascular wall thickness compared with the relative
vessel diameter in wild-type mice (Fig. 6 A and D). However, such
changes were not observed in FAAH−/− mice exposed to hypoxia
(Fig. 6 B and D). Similarly, the Fulton index was clearly elevated
in hypoxic wild-type animals indicating right heart hypertrophy,
whereas it was unaltered in FAAH−/− mice (Fig. 6E). These
findings were also supported by catheter-based right ventricular
systolic pressure (RVSP) measurements yielding strongly increased
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pressure in wild-type mice after 3 wk of hypoxia (Fig. S6A and Fig.
6F), whereas in FAAH−/− mice, no obvious changes could be
detected (Fig. S6B and Fig. 6F).
LC-MRM measurements of AEA and AA levels under

chronic hypoxic conditions revealed that 2 d after the onset of
hypoxia, AEA and AA levels significantly decrease. In the fol-
lowing days (5 d and 7 d) a steady increase of AEA and AA
levels was found under chronic hypoxic conditions reaching sig-
nificance for AEA at day 7 (Fig. S6C).
To further corroborate the important role of the AEA/FAAH

pathway in the generation of pulmonary hypertension and to
determine if FAAH is a potential therapeutic target, we treated
wild-type mice during 3 wk of hypoxia with URB597 (+URB) or
only solvent as control (−URB) by daily i.p. injections (5 mg/kg).
This treatment prevented hypoxia-induced remodeling and pul-
monary hypertension, namely, the elevation of vascular wall thick-
ness (Fig. 6 C and D), Fulton index (Fig. 6E), and RVSP (Fig. S6D
and Fig. 6F), whereas treatment of mice for only 3 d did not have
protective effects (Fig. S6E). These findings suggest that degra-
dation of AEA to vasoactive metabolites by FAAH is involved in
the development of hypoxia-induced pulmonary hypertension.

Discussion
Endocannabinoids are emerging as unique mediators of organ
homeostasis, and this concept also applies to the cardiovascular
system. In fact, experimental evidence indicates their in-
volvement in the regulation of systemic blood pressure (19) and
cardiac output (2) and in atherosclerosis (20). Herein, we dem-
onstrate that AEA mediates hypoxic pulmonary vasoconstriction
and is also involved in pulmonary hypertension via its degrada-
tion to FAAH-dependent metabolites. Effects of endocannabi-
noids on vascular tone have been mainly attributed to direct
endocannabinoid signaling via surface receptors (1, 2, 21) so far,
whereas degradation pathways of endocannabinoids have been
thought to play a minor role (4, 22). FAAH is the principal AEA-
degrading enzyme, thereby limiting the effects of AEA at can-
nabinoid receptors. We found FAAH to be strongly expressed in
the lung, whereas only low expression levels were detected in
organs or vessels involved in systemic circulation (i.e., heart and
tail artery), suggesting that this differential expression could
mechanistically explain the importance of the AEA degradation
pathway for pulmonary tone regulation. FAAH is known to
metabolize AEA to AA and ethanolamine, and AA is the pre-
cursor of eicosanoids, a family of lipid mediators that are
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Fig. 6. The AEA/FAAH axis is involved in the generation of hypoxia-induced pulmonary hypertension. (A) H&E stainings of intrapulmonary arteries of WT
mice demonstrate increased vascular wall thickness after 3 wk of HX (10% O2) (Right) compared with NX (21% O2) (Left). (Scale bar, 20 μm.) (B) H&E stainings
of intrapulmonary arteries of FAAH−/− mice display no change in vascular wall thickness after 3 wk of HX (10% O2) (Right) compared with NX (21% O2) (Left).
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generated by COX-, LOX-, or CYP450-dependent pathways.
Our pharmacological data reveal that AEA-induced pulmonary
vasoconstriction is mediated by COX and LOX enzymes. These
findings are in accordance with earlier studies, where AA and AA-
dependent eicosanoids were shown to modulate pulmonary tone
and contribute to HPV (15, 23, 24) and pulmonary hypertension
(16, 25). A recent study suggests that pulmonary endothelial cy-
tosolic phospholipase A2 generates AA and CYP450-dependent
metabolites under hypoxia, resulting in vasoconstriction (26). Our
data further extend this concept illustrating that hypoxia can also
increase levels of an important precursor of vasoconstrictive
eicosanoids and arachidonic acid in PASMCs. The complex pat-
tern of AEA/AA levels over time obtained with our LC-MRM
measurements also indicates that the balance of production and
degradation to eicosanoids is involved in hypoxic pulmonary hy-
pertension. We also provide evidence that the hypoxia-induced
elevation of AEA and AA is restricted to PASMCs and does not
occur in pulmonary endothelial cells. This is in line with the pre-
vailing notion that sensor, transducer, and effector mechanisms of
HPV reside in the PASMC (10). The endocannabinoid-mediated
HPV is restricted to FAAH-dependent pathways because no
hypoxia-induced increase of 2-AG, an endocannabinoid mainly
metabolized by MAGL, could be found; MAGL was only weakly
expressed in the lung, and 2-AG evoked no increase of pulmo-
nary vascular tone. We focused on the role of AEA in HPV
because it is the main and best characterized substrate of FAAH,
but there may also be other fatty acid amides involved. AEA
biosynthesis can be exerted by different enzymatic pathways, the
most important being hydrolysis of phospholipid-derived NAPE
by NAPE-PLD (18). The elevated NAPE-PLD protein expression

in PASMCs under hypoxia can explain enhanced AEA levels,
even though a contribution of other recently identified enzymes
capable of AEA generation such as α/β-hydrolase 4 (Abh4) and
glycerophosphodiesterse 1 (GDE1) (27) or protein tyrosine phos-
phatase, nonreceptor type 22 (PTPn22) (28), cannot be excluded.
Moreover, there are recent indications that reactive oxygen spe-
cies (ROS) are involved in the modulation of pulmonary vascular
tone by hypoxia (29). Because AEA has been reported to lead to
ROS formation (30), a link between these two pathways also
appears possible. Thus, we have identified the AEA/FAAH axis as
a previously undescribed signaling pathway playing an impor-
tant role in HPV and pulmonary hypertension. This could also
provide alternative treatment options for clinically highly rele-
vant pulmonary disorders, in particular, in the light of a recently
developed FAAH inhibitor with a pharmacological activity re-
stricted to peripheral organs (31).

Materials and Methods
Details for all the methods are found in SI Materials and Methods. De-
scription of cell culture protocols, reverse transcription-PCR, Western blots,
immunohistochemistry, and LC-MRM are given in SI Materials and Methods.
Also see SI Materials and Methods for IPL and in vivo experiments.
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